Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data
نویسندگان
چکیده
There is accumulating evidence that at current acquisition resolutions for diffusion-weighted (DW) MRI, the vast majority of white matter voxels contains "crossing fibers", referring to complex fiber configurations in which multiple and distinctly differently oriented fiber populations exist. Spherical deconvolution based techniques are appealing to characterize this DW intra-voxel signal heterogeneity, as they provide a balanced trade-off between constraints on the required hardware performance and acquisition time on the one hand, and the reliability of the reconstructed fiber orientation distribution function (fODF) on the other hand. Recent findings, however, suggest that an inaccurate calibration of the response function (RF), which represents the DW signal profile of a single fiber orientation, can lead to the detection of spurious fODF peaks which, in turn, can have a severe impact on tractography results. Currently, the computation of this RF is either model-based or estimated from selected voxels that have a fractional anisotropy (FA) value above a predefined threshold. For both approaches, however, there are user-defined settings that affect the RF and, consequently, fODF estimation and tractography. Moreover, these settings still rely on the second-rank diffusion tensor, which may not be the appropriate model, especially at high b-values. In this work, we circumvent these issues for RF calibration by excluding "crossing fibers" voxels in a recursive framework. Our approach is evaluated with simulations and applied to in vivo and ex vivo data sets with different acquisition settings. The results demonstrate that with the proposed method the RF can be calibrated in a robust and automated way without needing to define ad-hoc FA threshold settings. Our framework facilitates the use of spherical deconvolution approaches in data sets in which it is not straightforward to define RF settings a priori.
منابع مشابه
Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملAuto-calibrating Spherical Deconvolution Based on ODF Sparsity
Spherical deconvolution models the diffusion MRI signal as the convolution of a fiber orientation density function (fODF) with a single fiber response. We propose a novel calibration procedure that automatically determines this fiber response. This has three advantages: First, the user no longer needs to provide an estimate of the response. Second, we estimate a per-voxel fiber response, which ...
متن کاملA pitfall in the reconstruction of fibre ODFs using spherical deconvolution of diffusion MRI data
Diffusion weighted (DW) MRI facilitates non-invasive quantification of tissue microstructure and, in combination with appropriate signal processing, three-dimensional estimates of fibrous orientation. In recent years, attention has shifted from the diffusion tensor model, which assumes a unimodal Gaussian diffusion displacement profile to recover fibre orientation (with various well-documented ...
متن کاملDiffusion Gradient Calibration Influences the Accuracy of Fibre Orientation Density Function Estimation: Validation by Efficiency Measure
Introduction. Diffusion-weighted (DW) MRI provides important information regarding the arrangement of white matter fibres. However, imperfections in the DW gradients may cause errors in the estimation of diffusion parameters. The sources of the gradient errors are various and may arise from long-term eddy currents, background gradients, imaging gradients, and spatial non-linearity and non-unifo...
متن کاملNon-Negative Spherical Deconvolution (NNSD) for estimation of fiber Orientation Distribution Function in single-/multi-shell diffusion MRI
Spherical Deconvolution (SD) is commonly used for estimating fiber Orientation Distribution Functions (fODFs) from diffusion-weighted signals. Existing SD methods can be classified into two categories: 1) Continuous Representation based SD (CR-SD), where typically Spherical Harmonic (SH) representation is used for convenient analytical solutions, and 2) Discrete Representation based SD (DR-SD),...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 86 شماره
صفحات -
تاریخ انتشار 2014